
Classes
Lecture 22

Sections 7.1 - 7.4

Robb T. Koether

Hampden-Sydney College

Mon, Oct 24, 2018

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 1 / 24



1 Abstract Data Types

2 Classes

3 Data Members

4 Member Functions

5 Access Modes

6 Example

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 2 / 24



Outline

1 Abstract Data Types

2 Classes

3 Data Members

4 Member Functions

5 Access Modes

6 Example

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 3 / 24



Abstract Data Types

An abstract data type (ADT) is a type of object that is described
only by its behavior.
We could describe sets abstractly by their behavior:

{a,b, c}+ {a, c,d} = {a,b, c,d}. (set union)
{a,b, c,d} − {a, c} = {b,d}. (set difference)
{a,b, c} ∗ {a, c,d} = {a, c}. (set intersection)

We do not need to know the details of how sets are stored or how
these operations are carried out

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 4 / 24



Outline

1 Abstract Data Types

2 Classes

3 Data Members

4 Member Functions

5 Access Modes

6 Example

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 5 / 24



Classes

A powerful feature of C++ is its mechanism to allow the
programmer to create new data types.
With a “little effort,” these new data types can be made as
functional as the built-in types.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 6 / 24



The Point Type

For example, the programmer may need to write a program that
involves points (x , y).
One choice (not recommended) would be to create a pair of
doubles x and y and have the programmer “simply” remember
that x and y are the coordinates of the same point.
The program may involve hundreds of points (hundreds of x’s and
y’s).

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 7 / 24



The Point Type

The other choice (recommended) is to create a new Point data
type.
A Point object will be a single object with two components:
doubles x and y.
They behave as a “package;” where the point goes, x and y both
go. We never have one without the other.
This is accomplished through the class mechanism.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 8 / 24



The Point Type

Using a Point Object
cout << "Enter two points: ";
Point p;
Point q;
cin >> p >> q;
Point mid = (p + q)/2;
cout << "The midpoint is " << mid << endl;

Once the Point class has been created, the programmer may
work with Point objects as he would other objects.

What operators must be defined on points for this example to
work?

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 9 / 24



The Point Type

Using a Point Object
cout << "Enter two points: ";
Point p;
Point q;
cin >> p >> q;
Point mid = (p + q)/2;
cout << "The midpoint is " << mid << endl;

Once the Point class has been created, the programmer may
work with Point objects as he would other objects.
What operators must be defined on points for this example to
work?

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 9 / 24



Classes

A class is another name for a data type.
An object is an instance of a class.
A class consists of

Data members.
Member functions.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 10 / 24



Outline

1 Abstract Data Types

2 Classes

3 Data Members

4 Member Functions

5 Access Modes

6 Example

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 11 / 24



Data Members

Every object in a class has a specific set of data members, which
are themselves objects (possibly instances of other classes).
Each instance of the class has its own set of values of the data
members, distinct from other instances of that class.
For example, a Point object would have two doubles, with
specific values.
These data members record the state of the object.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 12 / 24



Outline

1 Abstract Data Types

2 Classes

3 Data Members

4 Member Functions

5 Access Modes

6 Example

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 13 / 24



Member Functions

The member functions define the actions that are permissible on
the object.
For example, the Point class might have

A getX() function that will return the x coordinate of a Point.
A setX() function that will set the x coordinate of a Point.
An output() function that will output a Point.
An isEqual() function that will determine whether two Points
are equal.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 14 / 24



Member Functions

Using a Point Object
double getX() const;
void setX(double x);
void output(ostream& out) const;
bool isEqual(const Point& p) const;

These four functions would have the above prototypes.

The keyword const at the end of the prototype means that the
member function will not change the invoking object.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 15 / 24



Member Functions

Using a Point Object
double getX() const;
void setX(double x);
void output(ostream& out) const;
bool isEqual(const Point& p) const;

These four functions would have the above prototypes.
The keyword const at the end of the prototype means that the
member function will not change the invoking object.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 15 / 24



Member Functions

Using a Point Object
cout << "Enter two points: ";
Point p, q;
p.input(cin);
q.input(cin);
double x = p.getX();
p.setX(x + 1.0);
if (p.isEqual(q))

p.output(cout);

Member functions are accessed through the dot operator.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 16 / 24



Member Functions

Using a Point Object
bool operator==(const Point& p, const Point& q);
istream& operator>>(istream& in, Point& p);
ostream& operator<<(ostream& out, const Point& p);

We can also define operators on class objects.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 17 / 24



Member Functions

Using a Point Object
cout << "Enter two points: ";
Point p, q;
cin >> p >> q;
double x = p.getX();
p.setX(x + 1.0);
if (p == q)

cout << p << endl;

Then the previous example becomes much more readable.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 18 / 24



Outline

1 Abstract Data Types

2 Classes

3 Data Members

4 Member Functions

5 Access Modes

6 Example

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 19 / 24



Member Access

Access to each data member and each member function is
controlled by the programmer.
There are three levels of access.

Public access – The member may be accessed by any function.
Private access – The member may be accessed only by its own
member functions (class scope).
Protected access – The member may be accessed only by its own
member functions and member functions of derived classes
(discussed in CS II).

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 20 / 24



Member Access

Typically, data members are private.
This guarantees the integrity of the object.
Non-member functions can’t change them.

Typically, member functions are public.
This allows the rest of the program to perform the necessary
actions on the objects.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 21 / 24



Outline

1 Abstract Data Types

2 Classes

3 Data Members

4 Member Functions

5 Access Modes

6 Example

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 22 / 24



Example of Using a Class

Example
point.h
point.cpp
Arclength.cpp

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 23 / 24



Assignment

Assignment
Read Sections 7.1 - 7.4.

Robb T. Koether (Hampden-Sydney College) Classes Mon, Oct 24, 2018 24 / 24


	Abstract Data Types
	Classes
	Data Members
	Member Functions
	Access Modes
	Example

